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Modulation of waves near the marginal state of instability 
in fluid-filled distensible tubes 
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Depamnent of Mathematics, Faculty of Science and Letters. Technical Univenity of Istanbul. 
80626 Maslakc, Istanbul, Turkey 

Received 23 June 1994, in hal form 20 December 1994 

Abstract One-dimensional wave propagation near the marginal slate of modulational 
instabiliry in an infinitely long, straight and homogeneous nonlinear elastic tube filled wfth 
an incompressible, inviscid fluid is considered. Using the reductive perturbation method, the 
amplitude modulation of weakly nonlinear waves is examined. It is shown that the amplitude 
modulation of these waves near the marginal state is governed by a generalized nonlinear 
Schriidinger equation (mu). Some exact solutions including oscillatory and solitary waves 
of the GNU: equation are presented. 

1. Introduction 

The nonlinear Schrodinger ( a s )  equation is the simplest representative equation describing 
the self-modulation of one-dimensional monochromatic plane waves in dispersive  media. 
The NLS equation is usually derived by balancing the nonlinearity and the width ,of the 
sideband of the quasi-monochromatic wave when both effects are assumed to be small but 
finite of the order E .  The NLS equation has a plane-wave solution of constant amplitude; 
the modulational instability of this plane wave is determined by the sign of the product of 
the coefficients of the nonlinear and dispersive terms of the NLS equation. The planewave 
solution to the NLS equation is modulationally unstable if the sign of the product is positive 
and modulationally stable if the sign of the product is negative. Therefore, the marginal state 
of the modulational instability is given by the condition that the coefficient of the nonlinear 
term or the coefficient of the dispersive term vanishes. In such a case, i.e. at the marginal 
state, the NLS equation is no longer vdid. In other words, the asymptotic expansion used to 
obtain the NLS equation is not valid in the vicinity of the critical wavenumber. Thus, to take 
into account nonlinearity, the asymptotic expansion should be modified and the effect of 
nonlinearity should be intensified; then the resulting evolution equation may include higher 
order nonlinear terms compared to those in the NLS equation. The primary objective of 
this paper is to discuss such a case within the context of wave propagation in fluid-filled 
distensible tubes. 

The problem of nonlinear self-modulation of small-but-finite amplitude waves in tluid- 
filled distensible tubes has been considered by several authors. Ravindran and Prasad [l] 
showed for a linear elastic tube-wall model that the nonlinear self-modulation of pressure 
waves is governed by a NLS equation. The same problem was investigated for a nonlinear 
visco-elastic tube-wall model by Erbay and Erbay [2]. It was shown that the amplitude 
modulation of pressure waves for a nonlinear visco-elastic tube filled with an incompressible, 
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inviscid fluid can be described by a dissipative NLS equation. In the absence of dissipative 
effects this equation reduces to the classical N L ~  equation which corresponds to the case of 
a nonlinear elastic tube. The modulational instability of  plane-wave solutions of the NLS 
equation was also studied in [2] for distensible tubes made of various elastic materials. It was 
observed that the plane-wave solution of the NLS equation is always modulationally stable 
for both linear elastic and Mooney-Rivlin elastic materials. However, for the other two 
materials, i.e. those proposed by Ishiara et al [3] and Demiray [4], this is not the case and 
the plane wave may be modulationally stable or unstable depending on initial deformation 
and wavenumber. Thus, it follows that for these two materials the NLS equation is no 
longer valid at the marginal state where the coefficient of the nonlinear term vanishes. In 
this paper, for fluid-filled nonlinear elastic tubes, the amplitude modulation of plane waves 
at a critical wavenumber for which the coefficient of the nonlinear term of the N L ~  equation 
vanishes is considered. Since the nonlinear term vanishes in the marginal state, one should 
introduce a new ordering to balance the nonlinearity and the band-width. Without changing 
the order of the band-width of quasi-monochromatic waves (U(€)), the effect of nonlinearity 
is intensified by assuming the order of nonlinearity as The reductive perturbation 
technique [5] is used to derive the appropriate modulation equation when the wavenumber is 
near to the critical wavenumber. Through the rescaling, higher-order nonlinear terms appear 
in the resulting evolution equation which is called the generalized nonlinear Schriidinger 
equation (GNLS). 

The one-dimensional model in this paper was originally proposed by Tait and Moodie 
[6]; in order to incorporate the geometric dispersion into the model, the tube-wall inertia 
is added to the pressurmea relation in [7]. The governing equations of the fluid in 
the tube, and the pressursarea relation for the tube wall are summarized in section 2. 
The dimensionless forms of the governing equations are also given in this section. For 
comparison purposes the pressure-area relations corresponding to various incompressible 
elastic materials are presented. 

Section 3 is devoted to the study of nonlinear modulation of small-but-finite amplitude 
waves near the marginal state of instability. First, the problem of amplitude modulation in 
fluid-filled nonlinear elastic tubes is briefly examined and the possibility of having marginal 
states for the NLS equation is discussed; it is pointed out that some elastic materials, i.e. 
those proposed by Ishiara e t  al and Demiray, have marginal states. In the same section, 
using the reductive perturbation method, the GNLS equation which is valid near the marginal 
state is derived. 

In section 4, using the approach given in [SI, the travelling wave solutions of the GNLS 
equation are presented. These solutions of the GNLS equation include both oscillatory and 
solitary waves. 

2. Governing equations 

We consider an infinitely long, straight and homogeneous tube filled with an incompressible, 
inviscid fluid. For a one-dimensional model, the governing equations for fluid flow are the 
conservation of mass and the momentum equations given by 

a A  a(Au) -+-=o 
at az 

and 
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respectively, where A denotes the intemal area of the tube, z is the axial distance, t is time, 
v is used to denote the fluid velocity in the z direction, pf represents the density of the fluid, 
and P represents the pressure difference between the inside and outside of the tube. These 
equations involve three unknowns, namely P(z ,  t ) ,  A(z ,  t )  and u(z, t )  and therefore, a third 
equation, the so-called ‘pressure-area relation’, is needed to complete the set of equations. 
The pressurearea relation used in this paper is derived in [6] for a nonlinear visco-elastic 
material, which includes the nonlinear elastic case as a special case, and is extended in 
[7] by adding the tube-wall inertia effects to incorporate the geometric dispersion into the 
model . 

For a nonlinear elastic material the pressure-area relation may be written in the following 
form: 

(2.3) 

where ps is the density of the wall material, /I is a material constant, and H ,  RO and A0 
are the thickness, the inner radius and the intemal area of the tube in the undeformed state 
respectively. The function Q(A/Ao) is determined by the elastic properties of the tube 
wall and vanishes when A = Ao. The explicit forms of @(A/Ao) corresponding to various 
elastic materials will be given below. 

Now, introducing the following non-dimensional quantities: 
-~ - 

t = cot/Ro ? = z / &  P = P&/(2pH)  

(2.4) 
- 
U = U / C O  . B = A/Ao K = p , H / ( p f R o )  

where co is the Moen$-Korteweg velocity, that is, ci = 2pH/(&Ro), into the governing 
equations (2.13-(2.3), and dropping the bars above letters for convenience, we obtain the 
following dimensionless equations: 

where Q(B) satisfies the condition Q(1) = 0. The asymptotic analysis in section 3 will 
be based on these dimensionless equations. Note that these equations involve two types of 
nonliiearities; one is due to the convective terms in equations (2.5) and (2.6) and the other 
results from the contribution~of the nonlinearity introduced in the pressure-area relation in 
equation (2.7). It is easy to see that if one expands Q(B) into a Taylor series about B = 1, 
and neglects nonlinear terms, equation (2.7) reduces to the following pressure-area relation: 

a2B 
a t 2  

2P - K -  = @’(1)(B - 1) 

which corresponds to the linear elastic case. 
The function @ ( B )  determines the behaviour of the solutions through the coefficient 

of the nonlinear term in the evolution equations. We now present Q ( B )  corresponding to 
the strain energy functions of three different elastic materials, namely the Mooney-Rivlin 
elastic material and those proposed by Ishiara et al 131 and Demiray [4] (for details see 
VI). 
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(i) For the Mooney-Rivlin elastic material the function Q(B) is given as 

@(B) = B - B-I. (2.9) 

(ii) For the strain energy function proposed by Ishiara et al [3] to represent certain 

(2.10) 

elastomers, @ ( B )  takes the following form: 

@ ( B )  = ( B  - B - ' ) [ l +  Z@(B + B-' - Z)] 

where @ is a material constant. 

as arterial wall, the function @(B) is obtained as 
(iii) For the strain energy function proposed by Demiray 141 for biological tissues, such 

@ ( B )  = (B - B-')  exp[@(B + B-' - 2)] (2.11) 

where @ > 0 is a material constant. 

3. Nonlinear wave modulation near the marginal state 

It is well known that the NLS equation arises as the governing equation for the amplitude in 
purely dispersive systems in which the linear dispersion equation does not admit complex 
frequencies for a real wavenumber. The nonlinear amplitude modulation in purely dispersive 
systems has been widely investigated in recent years using the reductive perturbation method 
formulated by Taniuti and Yajima [9], and other perturbation methods (see e.g. Jeffrey and 
Kawahara r.51). In a recent article [Z], the amplitude modulation of periodic waves in 
fluid-filled distensible tubes was investigated using the reductive perturbation method. 

Following the approach given in [SI the slow variables 5 and q are defined as 

(3.1) 

where A is a real constant and E is a small parameter measuring the weakness of the 
nonlinearity. Assuming that all the field variables have the following series solutions 
expanded in terms of the small parameter E about a constant state: 

2 6 = E ( Z  - A t )  I )  = E t 

where 0 is used to represent any of the field variables and 0 = kz--wt is the phase function 
(where k is the wavenumber and o is the frequency), then it is shown for a nonlinear visco- 
elastic tube that the amplitude modulation of waves is given by a dissipative NLS equation. 
In the absence of wall visco-elasticity, i.e. in the case of a nonlinear elastic tube, the 
dissipative Ms equation reduces to the following classical NLS equation: 

(3.3) 

where BF) is the dimensionless internal area of the tube in the first order; the same equation 
is also valid, with slightly different coefficients, for the other first-order quantities, i.e. 
dimensionless fluid velocity 0:) and dimensionless pressure Py). 

The coefficients p and q in equation (3.3) are given as follows. 
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k2 
U2 

+ 6 ~ k ' f  12) - (C"'(BO))~B~-(SK*~~ + 18~k'f  12) 

+@"(Bo)Bo(5K3k6 + 34K2k4 - 12Kk2 - 48) 

+ - ( ~ ~ k '  - 3 8 ~ ~ k ~  - 152K2k4 
0 2  

k2 

-168~k'-48) / [ l i B & K ( 2 f K k 2 ) ( K 2 k 4 + 6 K k 2 +  12)] (3.4) 1 
where a prime denotes differentiation with respect to the argument. Note that the coefficient 
p of the dispersive term is always negative for positive U. If one considers the linear 
pressure-area relation in equation (2.8) rather than the nonlinear one in equation (2.7) for 
the case of BO = 1, the coefficient q would take the following form 

o ( 6 ~ ~ k ~  + 3 5 ~ ' k ~  + 78~k'+ 36) 
Kk2(2 + ~ k ' ) ( ~ ~ k ~  + 6 ~ k ~  + 12) ' ' (3.5) 

Note that the coefficient q is always positive in the case of a line& elastic tube. 
It is well known that the ms equation has a plane-wave solution of a constant amplitude 

and that the modulational instability of this plane wave is determined by the sign of the 
product of the coefficients of the nonlinear and dispersive terms. Therefore, the marginal 
state of the modulational instability is given by the condition that the coefficient of the 
nonlinear term or the coefficient of the dispersive term vanishes. Since the coefficient 
p of the dispersive term given in (3.4)l is always negative for both hear and nonlinear 
elastic materials, the marginal state of instability of plane waves is given by the critical 
wavenumbers for which the coefficient of the nonlinear term vanishes. As is shown 
numerically in [2] there are no critical wavenumbers for linear elastic and Mooney-Rivlin 
elastic materials. However, depending on the initial deformation of the tube wall, i.e. 
depending on the value of BO, the presence of such critical wavenumbers is observed for 
the materials proposed by Ishiara et a1 and Demiray in the same study. The variation of the 
critical wavenumbers k (for which q becomes zero) with initial deformation BO is presented 
in figure 1. The aim of this paper is to investigate the behaviour of the field equations~ near 
these critical points, i.e. near the marginal state. Since the coefficient q of the nonlinear 
term vanishes for the critical wavenumbers, the ms equation derived and the asymptotic 
expansion method used are no longer valid near these values. Therefore, a new ordering 
should be used to be able to include nonlinearity in the analysis. This can be done by 
intensifying the effect of nonlinearity in the expansion. 

We now examine the amplitude modulation of periodic waves near the marginal state in 
a fluid-filled nonlinear elastic tube with dimensionless governing equations given by (2.5)- 
(2.7). Here the order of nonlinearity is assumed to be O(E"~)  instead of U(€) which is 
the case for the NLS equation. We shall derive a new governing equation near the marginal 
state at which the wavenumber of the carrier wave takes the critical value k, that is, the 
evolution equation to be found in what follows will be valid in the vicinity of these critical 
points. 

First, in order to see the dispersive character of ,  the onediiensional model, 
equations (2.5)-(2.7) are linearized about a constant state: B = BO, P = PO and U = 0. In 
this case BO and PO have to satisfy the relation 

2BoPo = @(Bo) (3.6) 

' 
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If Bo 

1.04 I 
O 10 20 

x# 

F i w  1. The variation of critical wavenumber k with Eo, for the strain energy functions 
proposed by Ishim et nl and Demiray. 

as a consequence of equation (2.7). Now assume harmonic wave solutions for the linearized 
equations that are in the form {i, 8: Fl exp[i(kz-ot)] where k and o respectively represent 
wavenumber and frequency, and B ,  P and 8 are the amplitudes of 'small' perturbations. 
Substitution for these solutions in the linearized equations leads to a set of homogeneous 
equations in terms of these amplitudes and, for non-trivial solutions, the determinant of the 
system must vanish. This condition yields the following dispersion relation: 

where o is a real quantity. Since a real wave speed is assumed, the inequalities 
@'(BO) - 2Po > 0 when Bo # 1 and @'U) 2 0 when BO = 1 should hold. 

We now consider the wavenumbers near the critical wavenumber k where the coefficient 
of the nonlinear term of the NLS equation vanishes. To be able to take into account the 
nonlinearity, all the field variables, i.e. B,  U and P, are assumed to have the following 
series solutions expanded in terms of the small parameter about a constant state: 

where Q is used to represent any of these field variables in which 00 = (BO, 0, PO), and 
0 = kz - of is the phase function. We have also assumed that the reality conditions 
0:) = @,$I)* (the asterisk denotes complex conjugation) hold so that 0. are real. As can 
be seen from the expansion (3.8). by assuming that the amplitude functions 0;) depend 
on the slow variables $ and 1, and that the phase function 0 depends on the fast variables 
z and t ,  we have decomposed the solution into a rapidly varying one associated with the 
oscillations and a slowly varying envelope of a carrier wave with these fast oscillations. 

As we are dealing with the nonlinear self-modulation of pressure waves centred around 
the frequency o and the critical wavenumber k, the coefficients of higher harmonics, except 
those of first harmonics, are taken as zero for the first-order quantities, i.e. 0y) = 0 for 
2 # +I .  In this case the fist-order quantities take the following form: 

(3.9) 01 = ay)((, q)e" + @-')(e, 



Wave modulation near mnrginal state 291 1 

are affected by 
nonlinearity near the marginal state. Furthermore, in order to eliminate the self-resonance 
we require that the dispersion relation (3.7) is not satisfied by the pairs ( l k ,  lw) for 1 3 2 
but is satisfied by the pair (k, 0). This can be expressed in the form D(lk ,  lo) # 0 for 
1 > 2 where D(lk, Zw) is defined as 

(3.10) 
Note that this expression gives the linear dispersion relation (3.7) for 1 = 1. 

Now, substituting the expansion (3.8) together with the coordinate stretching 
equation (3.1) into the field equations (2.53-(2.7), and equating the terms with the same 
powers of we obtain a hierarchy of perturbation equations; since the elements of the 
hierarchy are complicated, only the results obtained for each order will be presented here. 

For O(eln) ,  recalling that B f )  = uf" = P f )  = 0 for I # f l  and using the condition 
D(k, U )  = 0, we find the following results: 

"(1) 1 - - v l B ,  ( 1 )  F'F) = r1 B Y )  BY) arbitrary (3.11) 

We now want to discover how the slowly varying amplitudes 

D(lk, IO) = 12w2(2 + KZzk2) - l2kz[O'(Bo) - 2Pol. 

where 

For brevity, the arbitrary function B p )  will be represented by 4. 

obtained for O(EI/~),  we obtain 
For U(€), setting the coefficients of each mode equal to zero and using the results 

1 = 0  PO - @')@' + 2BoPr) = [a" - (4 + Kk2)n1]1@12 
1 = ~ l  U!' = vi Bz ( l )  p z )  = nlBF) ~ arbitrary 

1 = 2  B f )  = f lz@ u p  = uy$ 2 P:" = R2$2 

1 > 3  U2 (0 - - B(') 2 = p(') 2 -  - 0 (3.12) 
where the coefficients 82. u2 and rz are functions of the wavenumber k and of 0; their 
explicit forms are given by (A.l) in appendix A. For convenience, the argument of will 
not be written explicitly. Redefining the function B,'" as 

B, ( 1 )  - - B"' 1 + e  l/Zg'" 2 (3.13) 

the arbitrary function Bf) can be included in the function B f ) .  Thus, the arbitrary function 
Bil )  can be taken as zero. In this case B f )  = ut) = PF) = 0. 

For U ( C ~ / ~ ) ,  using the previously obtained results, we find the following results for each 
mode: 

1 = 0 (2Po - @')BF) +ZBoP?) = 0 
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where the coefficient q is given in equation (3.4)~. The explicit forms of the coefficients uI,  
P I ,  63, w3 and zs in equations (3.14) are given by (A.2) and (A.3) in appendix A. Since the 
coefficient q of the nonlinear term of the NLS equation is zero and D(k, o) = 0, the function 
Bf) is found to be an arbitrary function. In such a case the non-triviality condition for + 
yields h = do/& that is, h introduced by the coordinate stretching equation (3.1) is the 
group velocity of the carrier wave. Similarly, the arbitrary function Bf) can be included in 
B,'" by suitably redefining BF); thus the function Bf' can be taken as zero and is removed 
from the expressions for U!) and Pf). 

For U(& using the previously obtained results, we find the following equations for 
the zeroth mode: 

l = O  
-ABz (0) +Bo$) = -2~11+1~ 

(3.15) 
where the coefficient p is given by (A.5) in a pendix A. Solving the equations given in 

BF) = j3o14l2 u p  = VOl+lZ P p  = no I+ 12 (3.16) 

where j30, IJO and no are functions of k and 0 and their explicit forms are given by (A.4) 
in appendix A. For the first mode of U(€') 

Similarly, by suitably redefining the arbitrary function By) ,  the function B y )  may be 
included in BPI and, thus, Bil) is taken as zero. In this case B y )  = U:') = Pi') = 0. 
For the second and third modes of U(€') the following results are found: 

(3.15)1,z and (3.12)j together, the functions B, (8 , U;') and Pio) are found as 

1 = 1  U!) = U l B p  P p  = ZI B4 B t )  arbitrary. 

1 = 3  B f )  = U?) = P f )  = 0. (3.17) 
The explicit forms of the coefficients 011, CYZ, y1, yz. 81 and 82 are listed in (A.@, (A.7) and 
(A.8) in appendix A. Since we do not need functions obtained from the higher order modes 
of U(& they will not be given here. 

For U(e5P),  using the previously obtained results, we find the following equations for 
the zeroth-order 1 = 0 

(3.18) 
If equations (3.18) are solved together with the equation given in (3.14)1, the following 
result is obtained 

B y  U?) = p p  = 0. (3.19) 

-AB?) + Bou:? = 0 - h u p  + PiQ = 0. 
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Recalling equation (3.15), we need two more conditions to calculate the functions Bi’), U:’) 

and Pr’. These conditions are obtained from equations (2.6) and (2.7) for the zeroth mode 
( I  = 0) of €3: 

a.$‘) a$) a@) + -(pU;-1) a + u;-l)uy + p u p  + Iu(o)u(o)) = 0. 
-h- +-+- 2 2  2 a t  al l  a t  a t  

(3.20) 

If equations (3.20) are solved together with that given in (3.15)3 (for 1 = 0 of E’) the 
following results are obtained. 

(3.21) 

The explicit forms of the coefficients rl, r2, r3. U I ,  UZ, u3, si, $2 and s3 are given in 
(A.9), (A.10) and (A.ll) in appendiw A. For the first mode (1 = 1) of O ( E ~ / ~ ) ,  after some 
tedious calculations the following nonlinear integro-differential equation is obtained as a 
compatibility condition: 

where the coefficients q, 02. u3 and u4 are given by (B.1) in appendix B. 
A similar evolution equation was derived~ by Johnson 1101 in analysing the Stokes 

instability in fluid Rows near the critical values of kh = 1.363. As pointed out by Kakutani 
and Michihiro [ll], this integro-differential equation can be reduced to a differential equation 
by simply removing the integral part of the equation. If equation (3.22) is multiplied by 

and subtracted from the complex conjugate of the same equation the last term in the 
evolution equation takes the following form: 

(3.23) 

If expression 
equation is 

where 

(3.23) is introduced into equation (3.22). the final form of the evolution 

(3.24) 

41 = U1 + u4$(02 2U3)/2 42 = U2 + 2pU4 43 = U3 - pU4. 

The evolution equation (3.24) is called the generalized nonlinear Schrodinger (GNLS) 
equation. AS a result of equations (3.11) the same equation is valid with slightly different 
coefficients for uf” and P:’). The GNLS equation arises in a wide variety of fields as an 
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equation describing the self-modulation of the onedimensional monochromatic plane waves 
near the marginal state in dispersive media. This higher-order evolution equation has already 
been obtained by Kakutani and Michihiro [Ill for gravity water waves. The same equation 
has also been derived formally by Parkes in [I21 for a general dispersive system involving 
a single dependent variable. 

As special cases, the GNLS equation contains the following equations: 

in the case of 41 = 0 and 42 = 43, and 

(3.25) 

(3.26) 

in the case of 41 = 0 and 43 = 0. The first equation is called the derivative nonlinear 
SchrXinger (DNLS) equation; the DNLS equation govems the propagation of nonlinear Alfven 
waves in plasma [13]. The second equation describes the self-modulation of the complex 
amplitude of solutions to the Benjamin-Ono equation and is derived in [14]. 

The complete integrability of the GNLS equation given in (3.24) has been studied by 
Clarkon and Cosgrove 1151 via a Painlevd analysis. It was shown that the GNLS equation 
posseses the Painlevd property in the sense of Weiss et al [I61 if the following condition 
holds between the coefficients of the GNLS equation: 

(3.27) 

In OUT case the relation (3.27) gives a constraint between the wavenumber k, the frequency 
w and the function @ ( E ) .  If 42 = 9 3  then 41 = 0 and the GNLS equation (3.24) becomes 
the DNLS equation which is known to be completely integrable [13]. 

4P4i = 43(43 - 42). 

4. Exact solutions of the GNLS equation 

Kundu [17] has used a gauge transformation to transform equation (3.22) to the DNLS 
equation from which exact solutions to the GNLS equation are found. Pathria and Moms 
[8] have used a similar transformation which is a generalization of that given in [17]. Some 
other exact solutions to the GNLS equation are given by Flojanczyk and Gagnon [ 181 using 
the symmetry reduction method. New dimensional reductions and exact solutions for the 
GNLS equation are also given by Clarkson [19] using an extension of the direct method 
originally developed by Clarkson and Kruskal [ZO]. 

Redefining the time variable q as t = p q ,  the GNLS equation takes the following form: 

where all the coefficients are divided by the coefficient p .  We now consider the following 
solutions to equation (4.1) @I): 

4(ty r )  = f(t)expIi[+.Q. r )  + g 0 , ~ ) I l  (4.2) 
where 5 = .$ - ct and gQ, t) and Q ( t . 5 )  are real functions defined by 

g0,r)=c(t1br) /2+d +(t.r) =26 / fZ( t )d t .  (4.3) 

Here b, c and d are arbitrary constants and 6 is given as 

6 = -:&3 + 42). 
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Moreover, the function f satisfies the following ordinary differential equation: 

(4.4) 

where the definition z = f is used and a prime denotes differentiation with respect to the 
argument. The coefficients seen in equation (4.4) are defined as 

(4.5) 
The roots of the polynomial on the right-hand side of equation (4.4) are real if the following 
condition is satisfied: 

4% 4 
$2 = --2 + cqzz3 - (2bc - C * ) 2  3 

- - 
41 = 41 -I- 46' 28q3 - 8qz qz =4z. 

The coefficients ?j, and given in equation (4.5) depend on the function @ ( E )  and the 
wavenumber k. If the variations of the coefficients TI and Tz with wavenumber k are plotted 
(figure 2) for the material proposed by Ishiara et a1 (the figure is almost the same as the 
one corresponding to the material proposed by Demiray), it is observed that ?jl has both 
positive and negative values whereas ?jz is always negative. Since b and c are arbitrary 
constants, the restriction (4.6) is always fulfilled. In such a case it is reasonable to look for 
solutions for both positive and negative values of 41. 

"" I 

Figure 2. The variation of coefficients 4, and q2 with wavenumber k for the strain energy 
function proposed by Ishiara etal ( K  = 1, 8 1). 

If si, < 0, solving equation (4.4) and using equation (4.3)2 the following solitary-wave 
solution to equation (4.1) is obtained 
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where zl and 22 are the positive roots of the fourth degree polynomial given in the right- 
hand side of equation (4.4) (if expression (4.6) is less than unity for positive c it is possible 
to find two positive roots) and e is an arbitrary constant. 

If TI > 0 and 21 and zz are the positive roots of the polynomial given in equation (4.4) 
(if expression (4.6) is less than unity for negative c it is possible to find two positive roots) 
the following solitary-wave solution to equation (4.1) is found 

(4.8) 

If ql > 0, z1 is a positive root and zz is a negative root of the polynomial given in 
equation (4.4) (if the expression (4.6) is ,pater than unity for negative c it is possible to find 
a positive root and a negative root) the solitary-wave solution to equation (4.1) is found 

2122 

(4.9) 

It should be noted that the GNLS equation has solitary-wave solutions for both positive and 
negative vdues of TI. 
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Appendix A. 

The explicit forms of the coefficients a, vz and rrz are given as 

w2 = - ['#"'+(2-5Kk2)alI 
6 B o ~ o k  

nz = - [a"+ (2 - 8 ~ k ~ ) r r l l .  
6 B a ~ k ~  

The explicit forms of the coefficients V I  and pi are as follows 

(A. 1) 

1 1 
+?.Po - QI + W 2  k (" + A )  ( 4 A w ~  - (2 + K ~ * ) J C ~  f Q") - 2wl 
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pi  = -- -(a’’ + (2 - 3Kk2)JC1) 
Bo 2Kko 

(” + 21) (4Av1 - (2 + K k 2 h  + @”) - 4 V l  . (A.2) 1 I 
+2P0-@’+2A2 k 

The coefficients 8 3 ,  v3 and ~3 are 
1 

6Bo 
9k2 [ x(@+ (1 - Kk2)Zl) + -(3@” + (4 - Kk2)Zl) 

83 = D(3k, 30 )  3 B o ~ k ~  

(-4.3) 
[a’’ f (2 - ?.K.@)Zl] 

1 
3 B i ~ k w  

u3=v&- -  

I 

2B&k2 
The coefficients 80, vo and zo are 

J C ~  = ~ 1 @ 3  - - [a’’ + (2 - 3Kk2)Zl]. 

[4hV1 - (24- Kkz)Zl + @”] 
1 

Bo = 2Po - W+2A2 
A 2 V l  vo = -Po - - 
Bo Bo 
A2 V I  w 

Bo Bo k 
iro = -A - -(- +2A). 

The coefficient p is given as 

(A.4) 



2918 S Erbay 

The coefficients rl , r2 and r3 are given as 

r, =-  . .  4KOWl 
(2  + Kkz)z(2Po - a' + 21') 

~ 

1 
r2 = tA(4~1 + ~ B O W O  + 4&Uz) + B O ( ~ V I U I  + 2 ~ :  + w:) - p]  (A.9) 2Po-V+2?2 

r3 = 2Bcl (LBO + .). 2Po - 0' + W 2  Bo 
The coefficients U], uz and r13 are given as 

Arl 1 u l = - - -  
Bo Bik 

Arz 1 
Bo Bo 

Bo Bo- 

A2r1 1 
Bo B:k 

A2rz A 
Bo Bo 

A2r3 
Bo 

u 2 = - -  -(2&vz + BOUO + 2Ul) 

1% BO U ) = - - -  

The coefficients SI. sz and s3 are given as 

s l = - - -  (A- $) (A+ E) 
(A.ll) sz = - ~- -(2u1 + pQV0 + 2Bzvz) - 2UlUl - v; - $WO" 

s3 = - - ($Bo + .). 

(A.10) 

Appendix B. 

The coefficients of the evolution equation (3.22), ut, uz. 03 and cq are given as 
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